
selectivity emerged consistently in our network with larger
resource recovery time constants even when there are multiple
spikes (e.g., triplets or quadruplets) occurring within overlap-
ping LTP/LTD time windows (Figs. 5C and 3, A and C).

As a result of the resource model recovery dynamics, syn-
aptic plasticity depends indirectly on prior timings between
pre- and postsynaptic spikes (the specific multispike temporal
pattern). Thus learning with the resource model adapts accord-

Fig. 7. Analysis of prediction errors and distribution. A: independent pair-wise STDP prediction errors reversing LTP and LTD (predicting LTP instead of LTD
or vice versa) are predominantly due to pre-post-pre and post-pre-post triplets. These errors are effectively the same whether all pairs or only sequential
presynaptic and postsynaptic spike pairings are considered for the rule. These triplets contribute 83% of reversal errors: 39% predict LTD instead of LTP, and
44% predict LTP instead of LTD. B: a breakdown of these reversal error-causing triplets shows an interesting feature of the triplet timings. Whether predicting
LTD instead of LTP (pre-post-pre triplets) or LTP instead of LTD (post-pre-post triplets), the error-causing cases have a narrow timing distribution: the 1st spike
generally occurred �10 ms before the 2nd and 3rd occurred, within 10 ms thereafter. This is in the range of the point where LTP and LTD curves cross (see
Fig. 1A), and independent pair-wise STDP rules are sensitive to precise timing in terms of whether LTP or LTD dominates. C: the CDF of triplet predictions
and actual data reflects how well each model quantitatively matches the magnitude of strength changes. The actual data are distributed evenly (black line) and
best matched by resource model predictions (blue line). In contrast, the independent pair-wise STDP models (light and dark green lines) have unimodal
distributions (most predictions cluster near 0 weight change), and the suppression model is bimodal (red line; particularly clustering for LTD ��0.25). D: the
CDFs of actual and predicted quadruplet weight changes reflect the close modeling of the experimental data (black line) by the resource model (blue line). In
contrast, the independent pair-wise STDP models tend toward LTD, and the suppression model again has a bimodal distribution (particularly clustering for LTP
�0.25).

Table 1. Model prediction error statistics

Triplets Quadruplets

Model Reversals Impact Error Slope Reversals Impact Error Slope

Independent all pair-wise STDP 40% 0.044 0.52 0.52 56% 0.030 0.32 0.09
Independent sequential pair-wise STDP 40% 0.044 0.51 0.42 20% 0.004 0.18 0.50
Suppression 6% 0.074 0.33 0.62 12% 0.011 0.16 0.81
Resource 8% 0.044 0.34 0.61 12% 0.007 0.17 0.97

STDP, spike timing-dependent plasticity.
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ing to spiking activity allowing learning consistency and pro-
viding a homeostatic-like effect (Figs. 2 vs. 4; Fig. 5, A and B).
In contrast, independent pair-wise STDP models are, by defi-
nition, independent of the timing of spikes other than the pair
considered. Whereas the suppression model considers prior
spikes, it considers prior presynaptic and postsynaptic spikes
separately, and efficacies do not depend on prior weight
changes.

In our spiking neural network, the resource model allowed
neurons to learn diverse selectivity to parts of temporal patterns
in afferent spiking (Figs. 4 and 5). Neurons learned in a
multispike train context even without lateral inhibition or
explicit homeostasis and with equal initial weights (of course,
these mechanisms may provide additional advantages under
different contexts). This is in contrast to prior studies where
precession occurred, or idealized winner-take-all lateral inhi-
bition was used (Masquelier et al. 2008a, b). Dendritic delays
facilitated such diversity in learning selectivity because an

afferent spiking pattern was permutated according to the delays
(Fig. 5D). Whereas “suspicious coincidences” (Barlow 1994)
of spikes may suggest nonaccidental nature, these dendritic
delays allow consideration of suspicious relative spike timings
or permutations. Since the resource model dramatically im-
proved diverse selectivity, we predict that pattern recognition
or classification accuracy would be improved substantially.

With the resource model, neurons learned selectivity to
temporal patterns in a stable, robust, and consistent manner
(Fig. 5, B and E). The resource model exhibited a unique
proactive homeostatic effect so this learning occurred without
undue sensitivity to weight scaling (Fig. 4). The model adapts
between emphasis on learning causal relations occurring after
breaks in activity (allowing time for resource recovery) and
emphasis on proximate timing, according to a spiking activity
regime (Fig. 8, C and D). If a neuron is firing at a low rate,
there is less constraint on resources because recovery may
occur before the next LTP/LTD trigger resulting in larger and

Fig. 8. General LTP and LTD predictions for triplets. Triplets are characterized by the time between the 1st 2 spikes t1 and the time between the 2nd 2 spikes
t2. Predictions of overall LTP (red) or LTD (blue) are plotted for all 6 combinations of triplets across all possible values for those time delays between 0 and
50 ms. A: independent all pair-wise STDP model. Triplet cartoons are shown in the quadrant corresponding to the triplet and are the same for the other models.
B: suppression model. The suppression model compresses the LTP effect near the origin and stretches LTD in the lower left quadrant (solid white arrows).
C: shared resource model with low (no) resources available before the triplet occurs. When resources are low before the triplet, the resource model predictions
are strikingly different from independent pair-wise STDP and the efficacy model. LTP becomes more dominant for post-pre-post (bottom right quadrant near
the origin), particularly at a high firing rate (solid black arrow), and mainly dependent on t2, as would be expected due to the time required to recover resources.
A similar effect occurs for pre-post-pre at a high firing rate (upper left quadrant near the origin) and mainly dependent on t1. Thus LTP may dominate at high
firing rates regardless of which spike (pre or post) occurs first. Strong LTP and LTD regions also appear at large values of t1 (outlined arrows), and LTP is
stretched out to triplets with longer time delays (solid white arrow). Transition between LTP and LTD zones in pre-post-pre and post-pre-post triplets, if any,
is also markedly slower (gentler slope) with the resource model. D: shared resource model with high (all) resources available before the triplet occurs. When
resources are available at the beginning of the triplet (as would be expected for low firing rates or for triplets in isolation), the resource model appears more similar
to the suppression model. However, LTP is still emphasized when t2 is small (solid black arrows), and dependence tends to be concentrated more on one of the
pairs of spikes (solid white arrows).

562 LEARNING TEMPORAL CODING WITH RESOURCE-BASED STDP

J Neurophysiol • doi:10.1152/jn.01150.2011 • www.jn.org

 at N
Y

U
 M

edical C
enter Library on N

ovem
ber 14, 2012

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


faster subsequent weight changes, according to timing relation
of the first pre-post or post-pre pair after the break. Thus causal
pre-post sequences are reinforced. However, if a neuron is
firing at a high rate, constraints on resources are more pro-
nounced because recovery may be incomplete before the next
LTP/LTD trigger, and resources are low at the start of subse-
quent spike activity (Fig. 8C). In this case, whether LTP or
LTD occurs depends on the timing and order of spikes that
occur as resources become available. Emphasis tends to be on
learning existence of discernibly dominant causal relations
without undue sensitivity to exact timing. Slight changes in
relative timing between spikes do not change whether LTP or
LTD occurs (Fig. 9). This emphasis also tends to control firing
rate, suppressing increases in firing rates.

The adaptive nature of the resource model is particularly
interesting in the context of bursts. Why would presynaptic
neurons burst if most of the information is in the time to first
spike? Rather, we conjecture that there is substantial informa-

tion in the remainder of burst as well. For example, if a
postsynaptic spike occurs early during a presynaptic spike
burst, independent pair-wise STDP would first induce LTP and
then LTD, canceling the learning effect (as in pre-post-pre
triplets under pair-wise STDP). Thus learning of the burst
would be impaired. However, with the resource model, LTP
would occur, and the neuron can learn the early part of the
burst without cancellation by LTD. Information in the latter
part could be learned by another neuron that spikes later within
the presynaptic burst or shortly thereafter. Thus information
symbols can be longer or packed back to back. This conjecture
could be tested by studying the effect of truncating bursts on
cortical cell responses. The number of repetitions of presyn-
aptic spikes (N) occurring later in the burst (pre-post-N-pre)
could be controlled in vitro.

Due to the nature of the resource model, there is less
cancellation of increases of synaptic strength by decreases (and
vice versa) so that weight changes can proceed in a consistent

Fig. 9. Rate-dependent LTP and LTD predictions for
repeated pre- and postsynaptic spike pairs. A and B: re-
peated pre-post and post-pre pairs, respectively, are
characterized by the period of the repetition and the
offset between the pre- and post-spikes. The period
(rate) was varied between 10 ms (100 Hz) and 100 ms
(10 Hz). Pairs were repeated 10 times. Pre-post offset
was measured relative to the period. An offset of 0%
means the pre- and post-spikes are aligned. An offset of
100% means the pre or post is aligned to the next post
or pre, respectively. A sequence of repeated pre-post
pairs with an offset of x% is exactly the same as a
sequence of repeated post-pre pairs with the same period
and offset of (100 � x%) except that in the former, the
sequence starts with a presynaptic spike and ends with a
postsynaptic spike, and in the latter, the sequence starts
with a postsynaptic spike and ends with a presynaptic
spike. The repeated sequences were submitted to the
independent pair-wise STDP model, the suppression
model, and the resource model to determine how the
overall synaptic weight change to each sequence of
spikes would depend on the rate (period) and offset. C
and D: the independent all pair-wise STDP model pre-
dicted LTP or LTD depending almost entirely on the
offset, i.e., for each post, whether the pre before the post
was effectively closer in time than the pre after the post.
As expected, due to the independence of LTP and LTD
in this model, the profile of the post-pre sequence
prediction (D) is inverted from that of the profile of the
pre-post sequence prediction (offset x is roughly equiv-
alent to offset 100 � x; C). E and F: the suppression
model predicted dominance of either LTP or LTD at
high frequency depending on whether the sequence
started with a presynaptic spike or a postsynaptic spike,
respectively. G and H: the proposed resource model is
unique in that it predicted dominance of LTP at high rate
with the almost-complete disappearance of LTD (except
for the small, weak LTD zone at the top right corner of
H, which is due to the precise shape and magnitude of
the STDP curve near the origin and the amount of re-
sources to begin with given the sequence starts with a
post). Moreover, this prediction of LTP at high rate was
largely independent of whether the sequence started
with a pre- or postsynaptic spike. This is as expected
from the analysis of triplets with low resources to start
(Fig. 8C). The uniqueness of the resource model in this
regard is also consistent with the analysis of indepen-
dent pair STDP predictions attributing LTP/LTD rever-
sal errors by the independent model to short pre-post-pre
and post-pre-post triplets (Fig. 7, A and B).
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direction. This can clearly be seen in the gentle transition
between LTP and LTD regions (Fig. 8, C and D). This also
means that the learning rate can be high because weights are
less likely to be driven in the wrong direction during learning.
This might suggest, for example, that receptive fields in the
visual cortex develop with fewer stimuli than might be ex-
pected by independent pair-wise STDP models. From an effi-
ciency standpoint, it makes sense not to trigger commitment of
limited cellular resources (or energy) for conflicting synaptic
changes. When resources are depleted intermittently, this
knocks out or suppresses select interleaved spike pairs, which
may induce conflicting weight changes. However, this also
means the resource model often correctly predicts LTP (or
LTD) when an independent pair-wise STDP rule would predict
the opposite, i.e., LTD (or LTP).

The resource model also predicted the sign and magnitude of
long-term synaptic modifications induced with spike triplets
and quadruplets. LTP/LTD magnitudes were predicted accu-
rately, and the resource model uniquely matched the statistical
distribution of observed synaptic strength changes. This accu-
racy was achieved despite having only one parameter to fit: the
resource recovery time constant. LTP/LTD reversal errors
made by independent pair-wise STDP rules were generally not
made by the resource model as a result of LTP/LTD interde-
pendence. In contrast with independent STDP models, LTP
and LTD effects cancel, and instabilities may develop from
sensitivity of the determination of the winner to precise LTP/
LTD curves (time constants and magnitudes). Pre-post-pre and
post-pre-post triplets serve as prime examples. With the re-
source model, the effects of STDP are more consistent and
relatively insensitive to these and other parameters.

The resource model behavioral relation to firing rates is
unique because what matters in the resource model is when
large resource commitments are made. Due to the nature of
resource commitments, we anticipated that the resource model
would predict LTP increases and potential disappearance of
LTD at higher rates, as seen in rate-based studies (Nelson et al.
2002; Sjostrom et al. 2001). In particular, a high rate of post
before pre firing (e.g., post-pre-post) may generally yield LTP
rather than LTD (Fig. 8C). Our results for repeated spike pairs
indeed demonstrated the dominance of LTP at high rates (Fig.
9, G and H). As the firing rate increased, LTP began to
dominate for more of the pair timing combinations. Above 40
Hz, LTD largely disappeared. Whereas this is quantitatively
similar to biological results showing LTP dominance above 40
or 50 Hz found in some studies (Sjostrom et al. 2001), it
remains to be shown whether the resource model’s predictions
of rate-dependent effects are consistent with other studies and
how the predictions compare with other models that have been
specifically proposed to predict rate-based effects using pairs
(Clopath et al. 2010; Clopath and Gerstner 2010) or triplets
(Pfister and Gerstner 2006). Such repeated pair experiments have
often been limited to particular offsets (e.g., 10 ms between
post-pre). However, we propose that differences in rate-dependent
results might be explained by different offsets (relative time
between the repeated pairs).

The resource model generally drives weights to a bimodal
distribution similar to the typical STDP rules (Fig. 5, G and H).
This is in contrast to some studies suggesting broad unimodal
physiological weight distributions and weight-based STDP
rules (van Rossum et al. 2000). We anticipate that this may be

reconciled by combining the resource model with weight-based
STDP.

What are these mysterious resources, which once commit-
ted, require recovery before they can be recommitted? The
resource recovery time constant might be a factor to correlate
with potential underlying biochemical time courses, particu-
larly if they could be manipulated experimentally.

The induction of LTP involves postsynaptic N-methyl-D-
aspartate receptors (NMDARs) acting as detectors of the co-
incidence of EPSP and back propagating action potential (Ca-
porale and Dan 2008). The dependence of LTP on the delay
between EPSP and the back-propagating spike might be ex-
plained by a variety of interactions: kinetics of Mg2� unblock-
ing of NMDARs; dendritic conductance changes caused by
EPSPs impacting the postsynaptic spike; and regulation of
spike amplitude by A-type K� channels, which may impact
Ca2� influx through voltage-dependent Ca2� channels (Froemke
et al. 2006). It is important that Ca2� influx, due to back-
propagating spikes, can desensitize postsynaptic NMDARs, sug-
gesting that NMDARs might also be an important shared
resource and bottleneck between LTP and LTD (Froemke et al.
2005). However, there is evidence supporting multiple poten-
tial mechanisms for LTD, including coincidence detectors,
either shared with or separate from LTP (Caporale and Dan
2008). Even if the coincidence detectors for LTP and LTD are
different, Ca2�-related kinetics, Ca2� uptake by internal stores,
or other Ca2�-related influences might explain a common
resource or dependency between LTP and LTD (Zucker 1999).
A relatively complex model (with multiple parameters and
separate potentiation and depression thresholds), based on a
first-order cubic differential equation for Ca2� concentration,
has recently been proposed to modulate synaptic efficacy in
STDP (Graupner and Brunel 2012). Whereas the model ex-
plains different STDP curves for pairs and rate effects, the
model alone does not explain experimental triplet and quadru-
plet results (Brunel 2012; Froemke and Dan 2002; Froemke et
al. 2010). Since our resource model explains broad results,
including triplet and quadruplet predictions, we may infer that
there are shared resources beyond Ca2� (or that the aforemen-
tioned Ca2� concentration model does not explain all relevant
Ca2� effects).

There is evidence that some forms of LTD require presyn-
aptic NMDARs. How can there be a common resource or
dependency between LTP and LTD in such a case? The answer
might be in retrograde signaling from a postsynaptic to pre-
synaptic neuron. A model of LTD has been suggested, in which
postsynaptic action potentials enhance Ca2� influx leading to
synthesis of endocannabinoid, which seems to diffuse retro-
gradely and bind to presynaptic cannaboinoid receptor type 1
(CB1) (Rodriguez-Moreno et al. 2010). The dependence of
LTD on the delay between postsynaptic spike and EPSP might
then be explained by a presynaptic coincidence detection of
activation of presynaptic NMDARs by the glutamate release
from the presynaptic terminal itself and the CB1 receptor
activation by the retrograde signaling. If this model is correct,
the common resource or dependency might be in the mecha-
nism leading to the endocannabinoid synthesis or retrograde
signaling. Such theories might be examined indirectly in terms
of the time constants or kinetics of such mechanisms.

From a postsynaptic viewpoint, conceivably, phosphoryla-
tion and dephosphorylation of �-amino-3-hydroxy-5-methyl-
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4-isoxazolepropionic acid receptors may also correspond to a
short-term resource commitment due to a hysteretic effect of
phosphorylation (Ubersax and Ferrell 2007). Might phospho-
rylation-state transition time courses explain the resource
model time constant? It is known that CaMKII, once activated,
remains activated even after a drop in intracellular Ca2� and
disassociation of Ca2�/calmodulin (Lisman et al. 2002). In
addition, it is conceivable that mobilization of receptors be-
tween membrane and cytoplasm (reserves) may involve lon-
ger-term resource commitments (as well as regarding transcrip-
tion for maintenance).

In conclusion, whereas the shared resource is theoretical, the
resource model of LTP and LTD predicted biological experi-
mental results seen with multispike motifs as well as rate-based
protocols and enabled rapid and stable learning of complex
spike-timing patterns in a spiking neural network. Moreover,
with the resource model, neurons quickly learn to be selective
to diverse parts of patterns without lateral inhibition, weight-
scale tuning, or explicit homeostasis. These advantages are due
to a proactive homeostatic effect of the resource model and
heterogeneity in dendritic delays. In the parsimonious resource
model, the theoretical resource (or interdependency) is charac-
terized by the time course of resource recovery. The effect of
this resource recovery on STDP makes it possible for spiking
neural networks to learn recurring input patterns in challenging
conditions: when the pattern is never exactly the same (subject
to spike-timing jitter), present in only a portion of inputs, and
hidden in noise.
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