


















plant use can successfully restore hearing to functionally
deaf rats, likely after a period of experience-dependent
plasticity within the central auditory system.

DISCUSSION

Here, we describe a new approach to intracochlear array
insertion in rats, including a rapid method for objective sound
processor programming and an automated, freely moving be-
havioral conditioning setup to assess cochlear implant use.
With the use of anatomical, physiological, and behavioral
metrics, we have assessed the success of this approach by
reliably implanting female Sprague-Dawley rats with two- and
eight-channel arrays. This methodology and system will be
useful for studies of neurophysiological changes that promote
adaptation and use of cochlear implants and other neuropros-
thetic devices.

Whereas there are several animal models of cochlear im-
plants and single-sided deafness or residual hearing (hybrid
models), we sought to develop a system that will enable the
studies of central and peripheral plasticity that may occur only
with cochlear implant stimulation and use in the absence of any
residual hearing outside of experimental control. Specifically,
this initial version of the model is intended to mimic the effect

of cochlear implant stimulation in postlingually deaf adults. Of
foremost importance to such studies is behavioral verification
that animals are bilaterally, functionally deafened. This pre-
vents the animals from using residual acoustic hearing to
perform the task, instead requiring reliance on signals deliv-
ered via the cochlear implant. This setup reduces the confounds
of ear preference, hearing type (acoustic vs. electric) prefer-
ence, or use of nonauditory modalities to perform the task.
Here, we showed that significant functional hearing loss can be
easily achieved by a combined approach of physical intraco-
chlear trauma with intrascalar application of ototoxic drugs,
performed together with the array implantation. This mini-
mizes surgical time and recovery time, both of which could
adversely affect behavioral training.

To determine that this was an effective method for inducing
hearing loss, both in terms of time and degree of loss, we
compared techniques to induce bilateral, sensorineural hearing
loss and conductive hearing loss by examining physiological
(ABR), anatomical (histological), and functional (behavioral)
effects. With the use of intrascalar ototoxic drugs, coupled with
the insertion and removal of an intrascalar array, we induced
sensorineural hearing loss that resulted in the abolishment of
ABR waveforms, increases of behavioral target detection, and

Fig. 6. Cochlear histology. A–D: views (4� and 10�) of hematoxylin and eosin-stained cochleae of animals with normal hearing (A), conductive hearing loss
(B), sensorineural hearing loss without cochlear implant stimulation (C), and sensorineural hearing loss with unilateral cochlear implant (CI) stimulation (D).
Asterisk (*) in C, SA. All original scale bars, 100 � m. E: quantification of spiral ganglion neuron (SGN) cell density in all 4 conditions. *P 	 0.05; **P 	 0.01.
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behavioral hearing thresholds up to at least 90–110 dB SPL,
and a substantial (�50%) loss of spiral ganglion neurons was
observed in the absence of other gross histopathology.
Whereas death of hair cells and their synapses may be contrib-
uting directly to the sensorineural hearing loss (Kujawa and
Liberman 2015; Zilberstein et al. 2012), the degree of spiral
ganglion neuron survival has clinical implications for cochlear
implantation. The degree to which spiral ganglion neuron
counts directly or indirectly correspond to speech understand-
ing is controversial (Khan et al. 2005; Seyyedi et al. 2014), but
their requirement in some way for successful use of the implant
is generally accepted. Thus the ability of our animals, with this
significant spiral ganglion neuron loss, to learn to use the
cochlear implant demonstrates that our setup is useful in terms
of modeling a human phenomenon.

In the case of conductive hearing loss induced by malleus
disarticulation, the degree of hearing loss was less straightfor-
ward. We observed that whereas ABR waveforms were abol-
ished up to 90 dB SPL, indicating a shift of at least �60 dB
hearing level, behavioral target detection was only slightly
impaired, and behavioral hearing threshold shifted by approx-

imately �20 dB. Whereas this may seem surprising, there is
quite a range of hearing threshold shifts presented in the
literature, depending on various factors, such as type of con-
ductive hearing loss, age at deafening, and method of hearing
assessment. These values are anywhere from �35 to �60 dB
of hearing loss (Liberman et al. 2015; Sumner et al. 2005;
Tucci et al. 1999; Xu et al. 2007). Additionally, the difference
in ABR and behavioral threshold shifts specifically after mal-
leus removal has been demonstrated in the gerbil, where
conductive hearing loss results in ABR threshold shifts of �55
dB SPL at 4 kHz (Rosen et al. 2012; Tucci et al. 1999) but
behavioral threshold shifts of �30 dB SPL (Buran et al. 2014).
Furthermore, ABR shifts from �40 to �80–90 dB SPL, which
are similar to our values, have also been reported (Xu et al.
2007). Thus our ABR threshold shifts are not without prec-
edent in the literature, and our behavioral threshold shifts
are on the lower end of what might be expected (�20 –30).
Whereas spiral ganglion neuron counts were lower com-
pared with normal hearing animals, this difference was not
statistically significant. The decrease in spiral ganglion
neurons may support previous literature regarding substan-

Fig. 7. Physiological calibration of cochlear
implant stimulation. A: evoked compound
action potentials (ECAPs) with increasing
stimulation current. Asterisk (*) indicates
threshold. Characteristic first negative (N1)
and positive (P1) peaks are labeled.
B: evoked auditory brain stem responses
(EABRs) with increasing stimulation current
in the same animal with the same electrode.
Asterisk (*) indicates threshold. Third (III)
and fourth (IV) peaks are labeled; stimula-
tion artifact obscures the first 2. C: plot of
N1–P1 amplitude as a function of stimula-
tion intensity for the example shown in A. D:
plot of wave III amplitude as a function of
stimulation intensity for the example shown
in B. E: correlation of ECAP and EABR
thresholds across animals (n � 6) and across
both electrodes (all with 2-channel arrays).
The example in A and B is labeled with the
filled black circle. F: change (�) in ECAP
threshold over time. Left: ECAP threshold
for the target electrode in separate animals;
right: ECAP threshold for the single foil
electrode (for the 2-channel arrays, n � 4;
open circles) and for an average of the foil
electrodes (for the 8-channel arrays, n � 3;
solid circles). The Xs mark the last im-
planted day for each animal, although no
ECAP measurement was acquired. Dotted
lines from last circle to X only indicate an-
imal identity.

Innovative Methodology

854 BEHAVIORAL VALIDATION OF COCHLEAR IMPLANT USE IN RATS

J Neurophysiol • doi:10.1152/jn.00048.2016 • www.jn.org

 by 10.220.33.6 on A
ugust 29, 2016

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


tial neuropathy, even in “pure,” conductive hearing loss
(Liberman et al. 2015).

Given these results, we chose to deafen our rats bilaterally
with the combination of intrascalar drugs and trauma and then
unilaterally implant them with either a two- or eight-channel
array. The intracochlear array insertion was achieved via a CO
drilled into the basal turn below the SA; whereas this approach
has been used in other animal models (Agterberg et al. 2010;
Johnson et al. 2012; Pfingst et al. 2011), this is the first
demonstration in a rat. The CO approach in the rat allows for
access to deeper parts of the cochlea, expanding the range of
characteristic frequencies of neurons that can be reached with
the array, both with standard, small rodent arrays (2- or
4-channel), as well as with eight-channel arrays that have

previously not been used in mice or rats. Not only does this
insertion depth better mimic the human array insertion, it also
allows the rat model to be used in studies regarding frequency
identification and discrimination, which are key for speech
perception and music appreciation and are known to be rela-

Fig. 8. Cochlear implant stimulation evokes cortical responses. A: evoked
multiunit responses as a function of stimulation current through a single
electrode at 2 separate cortical locations in 1 animal. ECAP threshold and
cortical threshold are indicated with dotted lines. Example-evoked multiunit
response is shown in the inset; asterisk (*), stimulus artifact. Original scale bar,
0.5 mV (x-axis); 20 ms (y-axis). B: summary of cortical thresholds for each
animal (n � 4). The normalized cortical threshold is taken as the difference (in
microamperes) between the absolute cortical and ECAP thresholds, divided by
the ECAP threshold.

Table 1. Postimplantation animal training timelines

Rat No. No. Channels
Recovery Time,

Days
Nosepoke Training,

Days
Target Association,

Days
Target Detection,

Days
Target Recognition,

Days
Implant Duration,

Days

Rat 1 2 4 1 18 – 36 66
Rat 2 2 2 3 4 9 40 60
Rat 3 2 2 6 7 4 20 40
Rat 4 2 10 6 3 15 – 35
Rat 5 8 6 5 1 17 – 30
Rat 6 8 2 4 – 7 9 22
Rat 7 8 2 4 – 9 16 31
Means 
 SE – 4.0 
 1.2 4.1 
 0.7 6.6 
 3.0 10.2 
 2.0 24.2 
 5.9 40.6 
 6.2

Fig. 9. Behavioral validation of cochlear implant use after training. A: auto-
mated stimulation setup for behavioral training. B: target recognition is
abolished after deafening (hearing d=: 2.68 
 0.12; deaf d=: 0.01 
 0.04, P 	
0.001, Student’s paired two-tailed t-test). Open circles, animals trained on 4
kHz target tone; solid circles, animals trained on 22.6 kHz target tone. C: target
recognition is restored when the cochlear implant (CI) is on (CI on d=: 1.70 

0.25; CI off d=: 0.04 
 0.03, P 	 0.001, Student’s paired two-tailed t-test).
D: trial self-initiation rates are similar between sessions when the CI is on or
off (CI on: 4.21 
 0.35; CI off: 3.93 
 0.29, P � 0.47, Student’s paired
two-tailed t-test). E: improvement in d= as a function of experience in weeks
after nosepoke training is complete. Solid circles, animals (n � 3) with the
8-channel arrays; open circles (n � 4) had 2-channel arrays.
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tively poorer in cochlear implant users compared with normal
hearing listeners (Di Nardo et al. 2011; Harnsberger et al.
2001; Sagi et al. 2010; Svirsky et al. 2001, 2011). Whereas the
origins of this phenomenon can be surmised, rigorous animal
studies focusing on frequency-related tasks will be key in
unraveling its underlying physiological correlates. Our pro-
posed rat model provides access to a broader range of frequen-
cies and has been demonstrated to be appropriate for such
frequency-based tasks.

To this end, we designed an automated, freely moving
behavioral training system. Sound processors are programmed
using clinical software, and array impedances and ECAP
thresholds are recorded both intra- and postoperatively until
they stabilize, typically 1–2 wk after surgery. With the use of
only the ECAP threshold values for each electrode, we devel-
oped a streamlined approach to program both the minimum and
maximum stimulation levels, facilitating the speed with which
animals can be stimulated and behaviorally trained following
implantation. We determined that ECAP thresholds signifi-
cantly correlated with EABR thresholds within individual
animals and that ECAP thresholds were consistently higher
than auditory cortical thresholds recorded via extracellular
tungsten electrodes. The use of the cortical threshold as the
minimum level (determined in relationship to the ECAP
threshold) and the ECAP threshold as the maximum level for
the dynamic range eliminates guesswork in setting the stimu-
lation levels for animals and supports other literature values for
programming the dynamic range in animal models (Agterberg
et al. 2010; Fallon et al. 2009a; Hartley et al. 2010). With the
use of this streamlined programming method and our behav-
ioral setup, we demonstrated that implanted rats can detect and
differentiate between sounds that activate different implant
channels.

Collectively, the animal cochlear implant literature has made
great strides in developing models for clinical phenomena and
strategies for clinical improvements. The work presented here
seeks to address a perceived need: a model to study the effects
of exclusive cochlear implant hearing and processing in ani-
mals that had prior acoustic hearing experience, mimicking
what might occur in postlingually deaf human subjects. This
system can also be combined with physiological and optoge-
netic methods for recording and stimulating brain areas that
might be important for using or adapting to implant stimula-
tion, as well as congenital models of deafness. Additionally,
we have demonstrated the feasibility of our methodology using
a frequency-based task, which can be used to study spectral
processing and limitations with a cochlear implant and can also
recapitulate some important clinical observations, such as vari-
ability in initial performance and in learning trajectories across
patients (Chang et al. 2010; Tyler et al. 2000). We anticipate
that the technical advances presented here will be of use in
studying these and many other interesting and clinically rele-
vant questions about cochlear implant perception.
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